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SUMMARY

The in�uence of elasticity of a �uid exiting a channel is examined on transient coating downstream.
A hybrid spectral=boundary element approach is proposed to solve the problem. The �ow inside the
channel is assumed to be fully developed. A viscoelastic instability of one-dimensional plane Couette
�ow is �rst determined for a large class of Oldroyd �uids with added viscosity, which typically represent
polymer solutions composed of a Newtonian solvent and a polymeric solute. The Johnson–Segalman
equation is used as the constitutive model. The velocity pro�le inside the channel is taken as the exit
pro�le for the emerging free-surface �ow. The �ow is assumed to be Newtonian as it emerges from the
channel. An estimate of the magnitude of the rate-of-strain tensor components in the free-surface region
reveals that they are generally smaller than the shear rate inside the channel. The evolution of the �ow
front is simulated using the boundary element method. For the channel �ow, the problem is reduced to
a nonlinear dynamical system using the Galerkin projection method. Stability analysis indicates that the
channel velocity may be linear or non-linear depending on the range of the Weissenberg number. The
evolution of the coating �ow at the exit is examined for steady as well as transient (monotonic and
oscillatory) channel �ow. It is found that adverse �ow can exist as a result of �uid elasticity, which
can hinder the process of blade coating. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Although steady coating �ow has been extensively investigated, little e�ort has been devoted
to transient behaviour. This is of course understandable since it is the long-term �ow, after
transient e�ects die out, which is of practical interest. However, when di�culties are encoun-
tered in a given coating process, the solution to the problems may lie in the initial stages of
the process, long before the process reaches the steady state. It is thus important to exam-
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1028 R. E. KHAYAT AND N. ASHRAFI

ine the initial transients, which may allow early control of possible problems. There is also
the issue regarding the time it takes for a coating process to reach steady state. This issue
is particularly important for polymeric �uids, which exhibit di�erent relaxation times, and,
therefore, di�erent transient response. Finally, the coating process can be inherently transient,
and, consequently, may never settle into steady behaviour as a result of geometrical variations
or constant changes in processing conditions. This work examines transient e�ects by focusing
on the early stages of the blade coating process.
The coating process consists of applying a thin layer of �uid to a solid substrate. This

process can be of practical relevance, for instance, to the electronics industry (where the
eventual purpose of the layer is typically to store information) and to the paint industry
(where the purpose is typically to form a protective layer). Most of the theoretical work
so far concerning coating �ows has concentrated on Newtonian �uids [1] and, to a much
lesser extent, on non-Newtonian �uids, including viscoelastic and generalized Newtonian �ows,
touching processes in blade and roll coating (see Reference [2] and the references therein).
In this study, the modelling and simulation of the early stages of blade coating are examined

in two dimensions. The �uid is initially con�ned between two plates, one of which is set in
motion to induce the �ow. The problem thus consists of obtaining the �ow and stress �elds
inside a moving domain, as the �uid emerges from the channel. The study emphasizes the
in�uence of exit �ow, which is the fully developed �ow inside the channel, on the emerging
�uid. In the present problem, the lubrication assumption cannot be used since most of the
interest lies in the vicinity of the �ow front. In this region, the lubrication assumption cannot
capture the details typical of free surface �ow (fountain �ow). In the present study, the �ow
at the front is captured accurately since the �uid is assumed to be thick everywhere in the
domain (away and near the front).
The velocity pro�le inside the channel constitutes the major non-homogeneous boundary

condition for the moving domain problem. In this study, the plane Couette �ow (PCF) is as-
sumed to be fully developed and obeys the Johnoson–Segalman (JS) constitutive model [3, 4].
The presence of elasticity is expected to drastically alter the stability and bifurcation picture
in PCF, and yet no study has so far predicted the nonlinear bifurcation from the base �ow.
Similarly to the case of Taylor-Couette �ow, there is experimental evidence that the base �ow
in a channel may lose its stability as a result of �uid elasticity inside the tube [5]. This type
of instability is known as constitutive instability in the literature, as opposed to slip-induced
instability. The emergence of surface instability at the exit of an extrusion die (sharkskin and
melt fracture) suggests the possibility of a link with a hydrodynamic instability inside the
channel, away and upstream from the exit [6]. More recent studies based on more general-
ized constitutive models of the Oldroyd class showed that the base �ow in a channel can
become unstable to small perturbations for some range of Weissenberg numbers [7–9]. These
generalized constitutive models display a non-monotonic shear–stress=shear–rate curve. The
range of instability coincides with the negative slope of the stress curve. The choice of a vis-
coelastic constitutive model for the present problem is crucial. The more interesting response
of transient blade coating is expected to emerge when nonlinear channel �ow is considered.
The JS equation is ideal in this case as it leads to multiple nonlinear pro�les in the critical
range of Weissenberg numbers [10, 11]. These pro�les, along with the stability and bifurca-
tion diagrams, have been extensively investigated recently [11]. The method of solution was
based on the Galerkin projection method and low-order dynamical systems. These techniques
have been explored by Khayat [12] for various non-linear and non-Newtonian problems in

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:1027–1042



TRANSIENT FLOW EXITING A CHANNEL 1029

hydrodynamic stability. In this paper, only a summary of methodology and results relevant to
fully developed PCF are reported, leaving the details to Reference [11].
Once the channel velocity pro�le is imposed at the exit, the �ow �eld of the emerging

�uid can be determined. This is a problem of the moving boundary type, and its solution
remains challenging [13, 14], particularly when nonlinear viscoelastic e�ects are included,
in addition to geometrical nonlinearities. Several numerical techniques have been developed
for the solution of moving boundary=initial value problems. The boundary-element method
(BEM) is much easier to use than domain methods, especially for moving-domain problems.
The present paper is part of a series of studies on the applicability of the BEM to problems
of the moving-boundary type. The reader is referred to Khayat et al. [15] for a review.

2. PROBLEM FORMULATION AND SOLUTION FOR CHANNEL FLOW

In this section, only the �ow inside the channel is examined (Figure 1). A summary of
problem formulation is given for the channel �ow of a Johnson–Segalman (JS) �uid. Details
of formulation and solution procedure as well as additional results are given elsewhere [11].
Only one-dimensional �ow is considered. The resulting equations are solved using the Galerkin
projection.
Consider the PCF of an incompressible viscoelastic �uid of density �, relaxation time �,

surface tension �, and viscosity �. In this study, only �uids that can be reasonably represented
by a single relaxation time and constant viscosity are considered. The �uid considered here
is a polymer solution composed of a Newtonian solvent and a polymer solute of viscosities
�s and �p, respectively. Therefore �= �s + �p. The channel �ow is induced by the translation
of the lower plate, which move at velocity U, with the upper plate remaining stationary. The
velocity, time, space co-ordinates, and stress=pressure are non-dimensionalized by d=�, �, d,
and �p=�, respectively, where d is the gap between the two channel plates. There are three
important similarity groups in the problem, namely, the Reynolds number, Re, the Weissenberg
number, We, the solvent-to-solute viscosity ratio, �, and the capillary number, which are given,
respectively, by

Re=
d2�
�p�

; We=
U�
d
; �=

�s
�p
; Ca=

��
�pd
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Figure 1. Schematic illustration of the domain of computation and notation for
the boundary-integral method.
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In this work, the stress is taken to be the combination of a Newtonian and a polymeric
contribution. The constitutive equation adopted in this study is the JS model, which belongs
to the Oldroyd class of incompressible viscoelastic �uids [11].
If the x-axis is taken to lie half-way between the two plates, and y is the co-ordinate in

the transverse direction, then the total shear stress corresponding to the base (Couette) �ow
is given by

T bxy= �We+
We

1 + �(2− �)We2 (2)

Here �∈ [0; 2] and is a dimensionless material (slip) parameter. Note that We is a measure
of the shear rate since the velocity, u(y; t), at the two plates is given by u(y=0; t)=We and
u(y=1; t)=0. Equation (2) is perhaps the most revealing result of the JS model. It re�ects
the possibility of a non-monotonic behaviour for the stress=shear–rate relation. Indeed, the
stress generally exhibits two extrema (a maximum and a minimum) when plotted against We,
which tend to merge as � increases (see Reference [11]). This situation is reminiscent of the
load=deformation behaviour in elasticity. In the case of non-linear in�ation of a Mooney–
Rivlin (hyperelastic) membrane, for instance, the pressure also exhibits a similar behaviour
as function of the stretch ratio for various Mooney constants [16]. The curve for �=0 is
comparable to that of a Neo-Hookean solid, while the curve for a Newtonian �uid (�=1) is
comparable to the curve of a Hookean solid (see Figure 2 in Reference [16]).
For one-dimensional disturbance along the channel (x-axis), the departure (from base �ow)

is reduced to the axial velocity, u(y; t), normal stress di�erence, N (y; t), and shear stress,
S(y; t). In this case, the relevant equations for the problem reduce to

Re ut = �uyy + Sy; (3a)

Nt =−N + 2(WeS + Suy + Sbuy) (3b)

St =−S + uy + a(WeN + Nuy + N buy) (3c)

where a = �((�=2)− 1); Sb =We=(1+ �(2− �)We2) is the non-Newtonian contribution of the
shear stress of the base �ow, and N b = 2We2=(1+ �(2− �)We2) is the corresponding �rst nor-
mal stress di�erence. A subscript in Equation (3) denotes partial di�erentiation. It is important
to observe that if there is no external (mean) pressure imposed inside the channel, the depar-
ture of pressure is also zero. The �ow departure is represented by series of Chandrasekhar
functions, which satisfy the homogeneous (no-slip) boundary conditions [11].
The solution of Equations (3) is carried out using the Galerkin projection method. The

variables u(y; t), N (y; t) and S(y; t) are represented in series of Chandrasekhar functions
that satisfy the homogeneous (no-slip) boundary conditions. A suitable level of truncation is
imposed, which leads to the �nal nonlinear dynamical system. A judicious selection process is
applied for the choice of the various modes in order to ensure the physical and mathematical
coherence of the �nal model. The �rst step in the Galerkin projection method consists then
of multiplying each of Equations (3) by the appropriate mode and is integrated over the
mapped interval [− 1

2 ;
1
2 ]. One thus obtains a set of nonlinear and coupled ordinary di�erential

equations that govern the time-dependent expansion coe�cients. The solution of the resulting
nonlinear dynamical system is obtained after a suitable truncation level is introduced, i.e.
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after a suitable number of modes, M , is assumed. Assessment of convergence was previously
conducted [11], and it was found that convergence is reached for M¿6. Comparison against
the �nite-element results of Georgiou and Vlassopoulos [10] showed that the ‘exact’ velocity
pro�les, including discontinuities, can be captured by a small number of modes. In addition,
the overall stability and bifurcation picture is not signi�cantly in�uenced by the number of
modes adopted, and that expansion of the �ow �eld with M =2 lead to qualitatively accurate
results. Thus, most of the pro�les reported below are based on two-mode expansions.
Linear stability analysis indicates the existence of two critical Weissenberg numbers, Wec1

and Wec2, where an exchange of stability occurs between the base (linear) �ow and a
nonlinear Couette �ow. The range We¡Wec1 will be referred to as the pre-critical range,
Wec1¡We¡Wec2 as the critical range, and We¿Wec2 as the post-critical range. For a typical
�uid, �=0:2; �=0:04, the base �ow loses its stability to nonlinear �ow at Wec1 = 1:89 and
recovers linear behaviour at Wec2 = 7:78. The base �ow is thus stable for both the pre-critical
and post-critical ranges. While the (steady) �ow in the pre- and post-critical ranges is unique,
there is a multitude of solution branches in the critical region [11].
In practice, it is well known that in real systems, physical instabilities are observed when

the �ow rate and=or the level of elasticity are high. Both the �ow rate and �uid elasticity
are the determining factors behind the destabilization of the base �ow. Recall that the �ow
rate is controlled by We, and the level of elasticity by both We and �. Finally, the stability
picture near Wec1 and Wec2 was established numerically since linear stability analysis cannot
be applied in the vicinity of the critical points, which are non-hyperbolic �xed points. A
multiple-scale analysis was also carried out to con�rm the numerical results [11].

3. PROBLEM FORMULATION FOR FREE-SURFACE FLOW

In this section, the governing equations and boundary conditions are reviewed together with
some of the assumptions taken for the blade-coating �ow. For simplicity, the �uid is assumed
to be viscous incompressible and Newtonian as it emerges from the channel. Only low-
Reynolds-number �ow, typically characterized by small velocities, small length scales and=or
high viscosity, will be considered. In this limit, the inertia terms in the momentum equation
are negligible, so the �ow is in a state of creeping motion.

3.1. Problem statement and governing equations

With the fully developed channel �ow established from the previous section, the evolution of
the free surface �ow is now sought as the �uid emerges from the channel. The problem at the
exit is a di�cult one given the transient nature of the �ow and the presence of a free surface.
Although conventional methods, such as the �nite-di�erence and �nite-element methods, are
well adapted to handle complex non-linear �ow con�gurations, these methods are inadequate
for moving boundary problems, given their requirement for adaptive meshing and remeshing.
From this standpoint, the BEM is much more convenient since only the boundary needs to be
discretized, but the BEM is essentially inadequate to handle nonlinear �ow. This is a major
problem that still plagues the BEM despite recent developments in the so-called ‘non-linear’
techniques [17] order to apply the BEM, it is assumed that the �ow at the exit behaves like
a Newtonian �ow. This is not an unreasonable assumption given the relatively low shear and
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elongation rates that the �uid experiences after it leaves the channel (see Section 6). Inertia
is neglected as well, so the �ow is in a state of creeping motion.
At any instant, t, the �uid is assumed to occupy a 2D region, �(t), which is bounded by

�(t). It is convenient to take �(t) as the inner domain, excluding �(t). The �uid is taken
to be neutrally buoyant so the e�ects of gravity and any external body forces are negligible.
The conservation of mass and linear momentum equations are (in dimensionless form) given
by

∇ · u(x; t)=0; ∇ · �(x; t)= 0; x∈�(t)∪�(t) (4)

where x(x; y) the position vector in the (x; y) plane, u(x; t) the velocity vector, and �(x; t) is
the total stress tensor given in terms of the hydrostatic pressure p(x; t) and the rate-of-strain
tensor. Thus, although the �uid is Newtonian, it is still assumed to be composed of a solvent
and a solute of viscosities �s and �p, respectively, and a combined viscosity �= �s + �p. In
this case, the dimensionless stress is given by

�(x; t)=−p(x; t)I+ (�+ 1)[∇u(x; t) +∇ut(x; t)]; x∈�(t)∪�(t) (5)

where I is the unit tensor. It is important to note that the acceleration term @u=@t in the momen-
tum conservation equation has been neglected, so that for a Newtonian �uid, the formulation
in question is not strictly unsteady, but quasi-steady. This quasi-steady state assumption is
valid whenever L2=��T , where L and T are typical characteristic length and time of the �ow,
and �= �=� is the kinematic viscosity. In the present case, T ∼L=U , U being a typical value
of the driving velocity. Thus, for the quasi-steady state assumption to apply, one must have
UL=��1. This is indeed typically the case for �uids of interest to coating problems. Physi-
cally, the quasi-steady state approximation means that a Newtonian �uid immediately adjusts
to changes in the movement of the boundary or boundary conditions.

3.2. Boundary and initial conditions

The boundary �(t) is composed of part of the channel, �c(t), and the free surface, �f (t). Note
that �c(t) changes with time as the �uid emerges out of the channel and spreads on the lower
plate. Thus, �(t)=�c(t)∪�f (t). While the boundary conditions on �c(t) are straightforward
to implement, those on �f (t) must be examined more closely. The �uid is assumed to adhere
to the channel walls, so that stick boundary conditions apply. More generally, the velocity is
assumed to be fully prescribed on �c(t). The �uid is assumed to obey plane Couette �ow at
the exit of the channel. In addition, the stick and no-penetration conditions hold at the walls
of the channel. These conditions may be written compactly in the form

u(x; t)= uc(x); x∈�c(t) (6)

Thus, the �ow �eld is determined through the solution of Equations (4) and (5), which is
obtained subject to condition (6), and the dynamic and kinematic conditions on �f (t). The
proper choice and implementation of a kinematic condition is generally not obvious [1].
Regarding the kinematic condition on the free surface, the front is assumed to deform with

the �uid velocity, such that

dx
dt
= u(x; t); x∈�f (t) (7)
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The dynamic condition on the free surface are based on the continuity of the tangential stress
(no traction) and discontinuity of normal stress caused by the surface tension, and thus

t(x; t)=Ca−1n(x; t)∇ · n(x; t); x ∈ �f (t) (8)

where t(x; t)= �(x; t) · n(x; t) is the traction, and n is the normal unit vector at the front. Note
that boundary condition (8) is derived under conditions of equilibrium and uniform surface
tension, and its validity under dynamic conditions is simply assumed. The condition also
assumes implicitly that the �ow activity of the �uid outside the free surface (air) is negligible
with the (atmospheric) pressure taken as zero.
Finally, an initial condition is needed. In this study, the �uid is assumed to be at rest

initially, so that the following condition holds:

u(x; t=0)≡ 0; x∈�(t=0)∪�(t=0) (9)

System (4)–(5), subject to conditions (6)–(9), constitute a well-posed problem.

3.3. Boundary integral equation

The general time-dependent-integral equation for a moving domain is given by (Power and
Wrobel, 1995):

∫
�(t)
t(y; t) ·J(x|y) d�y

−
∫
�(t)

n(y; t) · u(y; t) ·K(x|y) d�y= c(x; t) · u(x; t); x∈�(t)∪�(t) (10)

where J and K are the usual symmetric and anti-symmetric tensors with respect to relative
position r=x − y of two points at x and y, and are given as (Power and Wrobel 1995):

J(x|y)= 1
4�

(
I log r − rr

r2
)
; K (x|y) =−1

�
rrr
r4

(11)

where r= |r|. The function c(x; t), for x∈�(t), depends on the geometrical form of the
boundary; its value arises from the jump in the value of the velocity integrals as the boundary
is crossed. When the boundary is Lyapunov smooth, which requires that a local tangent to
the moving boundary exists everywhere, the function c(x; t)=1=2. This is the case if constant
boundary elements are used. Thus, the assumption of boundary smoothness is generally not
valid in the vicinity of sharp corners, cusps or edges. In general, since c(x; t) depends solely
on geometry, it may be evaluated assuming that a uniform velocity �eld such as u(x; t)= ue
is applied over the boundary, e being the direction of the velocity and u is its magnitude.
Under these conditions, all derivatives (including tractions and stresses) must vanish. Hence,
at any time t, Equation (11) reduces to

c(x; t)=
∫
�(t)

n(y; t) · [e ·K(x|y) · e] d�y; x∈�(t) (12)

Thus, at any time t, the form of the boundary �(t) is determined, and the function c(x; t) is
evaluated using Equation (12). The boundary integral equation (10) governs the �ow variables
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at the boundary. It relates the velocity to the traction on �(t). The traction is determined
wherever the velocity is imposed and vice versa. Hence, at the free surface, where the traction
is speci�ed, the velocity will be calculated. For the rest of the boundary, at the moving wall
and channel exit, the velocity is speci�ed and the traction is determined.

4. SOLUTION PROCEDURE

In this section, a time-marching scheme is proposed to discretize Equation (7). Once the �ow
�eld is determined at a given time step from Equation (10), the location of the free surface
can be determined by solving Equation (7). As the boundary elements are distorted, the mesh
is re�ned through element subdivision. Consider the application of the integral equation (10)
for a point on the boundary, that is, for x∈�(t)=�c(t)∪�f (t). The �ow �eld at any interior
point x∈�(t) can be obtained once the �ow variables at the boundary are known. Since the
velocity is fully prescribed on �c(t), only the traction will be determined there. The traction
is imposed on the moving boundary, �f (t), where the value of the velocity will be found.
More explicitly, Equation (10) may be rewritten as

∫
�c(t)

t(y; t) ·J(x|y) d�y −
∫
�f (t)

u(y; t) · [n(y; t) ·K(x|y)] d�y

+Ca−1
∫
�f (t)

[n(y; t)∇ · n(y; t)] ·J(x|y) d�y

−
∫
�c(t)

uc(y) · [n(y) ·K(x|y)] d�y=
{
c(x; t)uc(x); x∈�c(t)
c(x; t)u(x; t); x∈�f (t)

(13)

where conditions (6) and (9) are used. The unknowns in Equation (13) are thus t(x; t) for
x∈�c(t) and u(x; t) for x∈�f (t), so that the values of the third and fourth integrals are
known.
The evolution of the free surface is determined by solving Equation (7). The time derivative

in the equation is approximated by an explicit Eulerian �nite-di�erence scheme. Let �t be the
time increment, so that at time t= k�t, the new position, xk , of a point on the free surface
is given by

xk =xk−1 + uk−1(xk−1)�t +O(�t) x∈�f (t) (14)

where uk−1(xk−1)= u[x=xk−1; t=(k − 1)t] is the velocity of the point at the previous time
step. The integral equation (14) relates the velocity and traction at the current time. Once the
�ow �eld is determined at each time step, t, the position of the moving boundary is updated.
The evolution of �f (t) is dictated by Equation (14). The updated position of the nodes that
belong to the free surface is thus determined once the velocity at the front is obtained from
the solution of Equation (13).
The integrals in Equation (13) are discretized into a �nite sum of contributing terms over

the boundaries. In this work, the boundary elements are assumed to be geometrically linear so
that the velocity and traction are constant over each element. This makes the proposed adaptive
remeshing method and estimation of curvature less di�cult to implement since no interpolation
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of the �ow variables is needed at each time step. The use of higher-order elements is possible,
but may not be crucial given the mesh re�nement and remeshing capabilities involved in the
current procedure. The traction is constant over �at linear element, and is multiply valued at
a corner node if higher-order elements are used. In two dimensions, the traction is assumed
to be double valued at every node of a curved boundary. Another advantage of the constant
boundary element is that the value of c(x; t) is always and everywhere equal to 1

2 . In addition,
the normal vector to each element is determined exactly.

5. NUMERICAL RESULTS

In this section the transient behaviour of the �ow is explored for di�erent exit conditions as
the �uid emerges out of the channel. These conditions are based on the behaviour of fully
developed JS �uid (upstream) inside the channel. Both pre-critical and critical pro�les will
be considered for the Couette �ow as We is varied. The �ow at the exit of the channel
may be steady or unsteady, but in practice, it is the latter that is encountered. This is the
case, for instance, when the lower plate is suddenly incepted from rest. The in�uence of both
steady and unsteady input pro�les will be considered on the developing free surface �ow. For
simplicity, surface tension e�ect will be assumed negligible.

5.1. Response of a steady exit �ow

Consider the response of the coating �ow to steady Couette at the exit of the channel. The
objective of this section is to examine the in�uence of �uid elasticity on the emergence
of free surface �ow in the early stages of coating. For simplicity, the pro�le inside the
channel, and at the exit (x=0), is assumed to be fully developed, although the emerging
�ow corresponds to the sudden inception of the lower plate. Thus, the �ow inside the channel
is assumed to respond instantly to the inception. The domain of calculation is initially the
unit square (x; y)∈ [0; 1]× [0; 1]. Only the Weissenberg number is varied and the rest of the
parameters are �xed to Re=1, �=0:2 and �=0:04. In this case, the two critical Weissenberg
numbers are Wec1 = 1:89 and Wec2 = 7:78, so that the pre-critical, critical and post-critical
ranges correspond, respectively, to We¡1:89; 1:89¡We¡7:78, and We¿7:78.
The results corresponding to the pre-critical and critical ranges are displayed in Figure 2

for We∈ [1; 7]. Note that the response in the post-critical range is the same as that in the
pre-critical range since the Couette pro�le is the same in the two ranges. In all cases, the
Couette pro�le is included for reference (dashed curve) in addition to the free surface pro�les
at the early time stages of �ow. Note that the velocity pro�le is normalized for comparison
with the case We=1. The response in the pre-critical range is typically illustrated by the
We=1 �ow. In this case, the Couette �ow is linear, similarly to Newtonian �ow. Right at
the inception, and as expected, the free surface is initially linear with respect to y, similarly to
the Couette pro�le. As the �uid emerges out of the channel, the shape of the melt front begins
to deviate form the linear pro�le and assumes a curved shape. The bulk of the �uid trails
further the �uid in the immediate vicinity of the moving lower plate. After some time, the
pro�le concavity changes, and the front tends to bulge out. Numerical instabilities of the saw-
tooth type are observed, which are usually controlled by applying the smoothing technique.
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Figure 2. Response to steady Couette �ow at the channel exit (dashed line). Evolution of the free
surface for various values of the Weissenberg number (Re=1, �=0:2 and �=0:04) in the pre-critical

range (We¡1:89), and critical range (1:89¡We¡7:78).

In the present case, however, the instability remained localized (close to the lower plate), and
did not necessitate smoothing.
In the critical range, the Couette pro�le becomes non-linear. In this case, there is a multi-

plicity of solution branches. Each steady velocity pro�le depends on the initial conditions used
to reach it. This statement may at �rst appear meaningless since a steady-state solution does
not generally depend on initial conditions. However, when more than one steady-state solution
exist, each solution may correspond to a set of initial conditions. In the present problem, the
initial conditions correspond to the initial perturbation from the base �ow. In this study,
the Couette pro�les are taken to correspond to a �ow with an initial sudden inception. The
in�uence of �uid elasticity in the critical range is depicted in Figure 2 for We=2, 2.5, 3, 4,
5, 6 and 7. All pro�les at the channel exit are non-linear as indicated by the dashed curves
in the �gure. As We exceeds Wec1 = 1:89, a dramatically di�erent Couette pro�le is found as
indicated for We=2. The response of the coating �ow is initially almost linear, but it begins
to exhibit an adverse behaviour near the stationary plate. In fact, a signi�cant portion of the
�uid actually moves in the opposite direction of the main stream. The �ow exhibits a vortex
structure similar to lid-driven cavity �ow.
As elastic e�ects increase, the adverse �ow decreases in intensity. The �ow at the chan-

nel exit begins to show a reduction in backward motion. The coating �ow adjusts to the exit
pro�le, and more �ow begins to move forward with the lower plate (see the �ows correspond-
ing to We=2:5 and 3). The �ow for this range of Weissenberg numbers clearly indicates

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:1027–1042



TRANSIENT FLOW EXITING A CHANNEL 1037

Figure 3. Response to transient Couette �ow at the channel exit. The �gure shows the development
of the exit �ow (dashed lines) from sudden inception. Evolution of the free surface (solid lines) for

We=1, Re=0:1, �=0:2 and �=0:04.

a di�culty in coating a plate right after the onset of instability. In practice, this di�culty
may translate into the impossibility of coating a material once the �ow has reached a critical
Weissenberg number, for instance, as a result of plate acceleration. As We increases further,
the adverse �ow disappears completely in the channel �ow as depicted for We=4, 6 and 7.
However, the free surface �ow still experiences backward motion, with the �ow gradually
resembling that corresponding to We=1. Finally, after We exceeds the second critical Weis-
senberg number, Wec2 = 7:78, the base �ow becomes stable once again, and a linear exit
pro�le is again observed just like the pre-critical case. The �ow exhibited in Figure 2 bares
a strong resemblance two-dimensional cavity �ow. In that case, the back �ow emerges as a
result of the presence of lateral boundaries.

5.2. Transient response to the inlet �ow

Consider now the in�uence of a developing channel �ow on the emerging �uid. Unlike the
previous section, the exit �ow is assumed to evolve from rest under sudden inception. The
in�uence of the Reynolds number in this case is important since the acceleration term in
Equation (3a) is no longer zero. It is generally found that the evolution of channel �ow
toward the steady state is monotonic when Re is small, and it is oscillatory when Re is
relatively large. Two cases will be considered next to illustrate the in�uence of Re on coating
in the pre-critical and critical ranges of the Weissenberg number. The evolution of the �ow
inside and outside the channel is followed from rest, at time t=0, when the �ow is induced
by sudden inception, until the time when the channel �ow reaches the steady state.
Consider again the pre-critical case, We=1 and Re=0:1. In this case, the channel �ow is

expected to evolve monotonically to the linear Couette �ow as depicted from Figure 3. The
�gure is not drawn to scale for clarity. The arrow indicates the direction of �ow development
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Figure 4. Response to transient Couette �ow at the channel exit. The �gure shows the development
of the exit �ow (dashed lines) from sudden inception. Evolution of the free surface (solid lines)

for We=4, Re=1, �=0:2 and �=0:04.

inside the channel. The �gure shows that the response of the coating �ow di�ers from that in
Figure 2 for the same Weissenberg number (We=1). Unlike the response to steady (linear)
Couette �ow, in this case the front exhibits some initial back �ow, but eventually changes
concavity to become similar to the later stages in Figure 2. The bulk behaviour is, however,
essentially the same in both cases.
In the critical range, oscillatory behaviour is easier to detect, as typically illustrated in

Figure 4 for We=4 and Re=1. The arrows in the �gure indicate the sense of time evolution
of the channel �ow. Initially, there is a sudden jump to (almost) linear Couette �ow inside the
channel. This is also con�rmed from the �rst curve shown for the front. There is a signi�cant
adverse �ow that develops with time. However, it may not be as strong as in the case We=4
shown in Figure 2 for steady exit �ow. Note that complete steady state is not fully restored
inside the channel (although it is indicated by ∞ in Figure 4); much longer time is needed to
reach the state shown in Figure 2. The oscillation in channel �ow is inferred by the sense of
the arrows. Finally, it is important to observe, from Figures 2 (We=4) and 6, that transient
channel �ow appears to have minimal e�ect on the overall evolution of the coating process.

6. DISCUSSION

The major point that is being addressed in this discussion is the assumption adopted in the
present formulation to consider the �ow as Newtonian as it emerges from the channel. Several
arguments can be used to justify this assumption, but the argument of scale, and that regarding
the change in �ow conditions at the channel exit are the main ones. It is made clear that
the assumption can be limiting, and it is adopted here, like most common assumptions, for
practical reasons. First, consider the change in �ow conditions.
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Figure 5. Relative magnitude of shear and normal strain rates at the �nal front for a �ow in the
pre-critical range (We=1, Re=1, �=0:2 and �=0:04). The �gure shows (for reference) the shear rate
at the channel exit (1), and at the front, the overall shear rate (2), the distribution of |@v=@y| (3).

In many �ow con�gurations, overall �ow conditions may change with time or from one
location to the other. The present blade-coating �ow in Figure 1 is a striking re�ection of the
latter case. The problem of die �ow is another illustration, but there is an important di�er-
ence between the two �ows as will be argued shortly. Viscoelastic e�ects become signi�cant
whenever shear and=or elongation �ow is signi�cant. As the �uid exits the channel, there is a
dramatic drop in shear rate. In fact, the free surface �ow, because of the adherence conditions
at the moving plate, is expected to move almost like a rigid body. Given the absence of a
driving pressure, or, more importantly, the lack of mechanism for elongation �ow, normal
stress e�ects are also not expected to be important. This is in sharp contrast with the die
swell problem, which exhibits a sudden expansion of the �ow induced by normal stresses.
In blade coating, the absence of hydrostatic pressure causes normal stresses to reduce signi�-
cantly in the free-surface �ow region, especially at the free surface itself, since pressure must
be balanced by normal stress for the traction to vanish (assuming negligible surface tension
e�ect). It is the magnitude of ux ≡ @u=@x, or vy ≡ @v=@y, that is crucial here, since it is directly
related to the magnitude of the (elastic) normal stress di�erence.
The assessment of the magnitude of the rate-of-strain tensor components, including that of

the average shear rate, is assessed upon comparison against the magnitude of the shear rate at
the channel exit. Three typical ranges of �ow are considered for the assessment of magnitude
of the rate of strain, namely the pre-critical range, the critical range and moderately critical
range. The comparison is typi�ed in Figures 5–7 for We=1, 4 and 7, respectively. These
three �ows correspond exactly to those in Figure 2, with Re=1, �=0:04 and �=0:2. The
distribution, with position y, of the magnitude of the shear rate at the channel is included in
the �gures for reference. The average shear rate is estimated by monitoring the ratio of the
di�erence in the horizontal velocities at the plate and at the free surface over the free surface
height. The �gures show, along the free surface, the distributions of the magnitude of the
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Figure 6. Relative magnitude of shear and normal strain rates at the �nal front for a �ow in the highly
critical range (We=4, Re=1, �=0:2 and �=0:04). The �gure shows (for reference) the shear rate at
the channel exit (1), and at the front, the overall shear rate (2), and the distribution of |@v=@y| (3).

Figure 7. Relative magnitude of shear and normal strain rates at the �nal front for a �ow in
the moderately critical range (We=7; Re=1, �=0:2 and �=0:04). The �gure shows (for
reference) the shear rate at the channel exit (1), and at the front, the overall shear rate (2),

and the distribution of |@v=@y| (3).

average shear rate (2), as well as |vy| (3). For pre-critical �ow (We=1), the shear rate at
the channel exit is constant and is equal to one as depicted from Figure 5. The �gure shows
that the average shear rate in the free surface �ow region is roughly twice smaller than the
exit shear rate, except perhaps near the channel exit and at the front tip where a singularity
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develops. The quantity |vy| is even smaller, roughly one order of magnitude smaller than the
shear rate at the exit. The comparisons for We=4 (Figure 6) and We=7 (Figure 7) lead to
similar observations. Recall that for We¿8, one recovers the same �ow con�guration of the
pre-critical range. In conclusion, the magnitude of the rate-of-strain components appears to
be generally smaller than that of the shear rate at the channel exit. The normal components
are one order of magnitude smaller. This comparison should be indicative of the relative
insigni�cance of elastic e�ects in the free-surface �ow region.
A scale argument can also be used to assess normal stress e�ects, by considering the value

of the Weissenberg number, We=U�=d. For a given �uid, with � being �xed, he value of We
is large whenever the typical velocity, U , of the �uid is large, or whenever the typical length,
d, is small. In other words, the overall shear rate must be large for We or normal stress
e�ects to be signi�cant. As the �uid exits the channel, the characteristic velocity remains of
the same order as inside the channel. The relaxation time does not change since the �uid in
question is still the same. However, d is no longer the (only) characteristic length, especially
for the �ow far upstream from the exit. Of course, the width of the �uid is O(d), but another
characteristic length, L, emerges, namely the horizontal extent of the �uid outside the channel,
which can be much larger than d. In this case, normal stress e�ects are O(U�=L)�O(U�=d),
especially for a thin liquid. More precisely, viscoelastic e�ects should not be important far
downstream relatively to channel �ow. However, they are expected to be more signi�cant near
the channel exit. Thus, and expectedly so, the scale argument indicates that the assumption
of Newtonian �ow is less valid in the very early transient stages of the free surface �ow, but
it should hold further downstream.
It is of course desirable to have a numerical implementation that is free of any assump-

tion, where the problem is solved in is entirety as a viscoelastic �ow problem. However, the
moving boundary problem is extremely di�cult to solve in the presence of non-linear e�ects
at high Weissenberg number and inertia, involving a complex constitutive equation such as the
JS model. The numerical solution of a highly non-linear involving a moving domain remains
challenging despite the e�orts in the literature devoted to this important class of problems as
encountered in rheology and polymer processing. The simulation of high-Weissenberg �ow
remains challenging even for problems with �xed domain (with and without a free surface).
The BEM loses, in a drastic manner, its advantage over more conventional methods when
non-linearity is present. For highly non-linear problems, domain discretization becomes un-
avoidable, whether the BEM or other methods are used. In this case, remeshing of the domain
is required, which adds considerable di�culty to the numerical treatment.

7. CONCLUSION

A hybrid approach consisting of low-order dynamical systems and the BEM is proposed for
the simulation of the early stages of blade coating. The stability and bifurcation of PCF
of a JS �uid are investigated using the Galerkin projection method. The viscoelastic model
used here, displays non-monotonicity of the shear–stress=shear–rate curve, and belongs to the
wider class of Oldroyd constitutive models that lead to the destabilization of Couette �ow.
The viscoelastic velocity pro�le of the fully developed channel �ow is imposed at the exit of
the channel as the driving �ow for the �uid emerging out of the channel. The �uid is assumed
to be Newtonian as it exits the channel. The justi�cation of this assumption is based on the
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fact that the magnitude of the rate-of-strain components is relatively small in the free-surface
�ow region, except perhaps at the exit and at the tip where the free surface meets the moving
plate. The BEM is particularly convenient in this case as it allows easy implementation of
adaptive meshing or remeshing to determine the evolution of the moving front.
Three characteristic ranges of Weissenberg numbers are identi�ed for the PCF: the pre-

critical, the critical and the post-critical ranges. In the pre- and post-critical ranges, the linear
Couette �ow is unconditionally stable. In these two ranges, the front exhibits a linear shape
initially, and eventually swells in the long term. In the critical range, the channel velocity
pro�le is non-linear, leading to strong adverse �ow in the coating process near the �rst critical
point. At higher Weissenberg number, the adverse �ow weakens, and eventually disappears
completely near the second critical point, beyond which linear PCF is restored. The response
to suddenly incepted �ow shows that the initial transients in the channel �ow do not have a
signi�cant in�uence on the coating process.
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